Information Extraction and Ethics
Natural Language Processing Module 2019 (Dr N Aletras)

Prof Jochen L Leidner, MA MPhil PhD FRGS
⟨leidner@acm.org⟩
In this session, we aim to:

- get introduced to information extraction, its concepts and history
- learn about rule based and learning approaches to IE
Outline

- Motivation
- Background: Information Extraction
- Key Concepts
- Architecture
- Methods
 - Rule-based (Example: GATE/JAPE)
 - Machine learning based (Example: Nymble)
- Annotation
- Feature extraction
- Applications
- From named entity tagging to event extraction
Information Extraction (IE) is

- the extraction of structured (relational) data from unstructured (= textual) sources
- a practically-motivated engineering discipline (models not necessarily inspired by nature)
- the use of natural language processing techniques to populate the slots of structured templates with appropriate fillers

IE was conceived as a shortcut to build useful systems when full text understanding based on syntactic parsing was beyond the state of the art.
“Concepcion, 23 Aug 88 (Santiago Domestic Service) – Police sources have reported that unidentified individuals planted a bomb in front of a Mormon Church in Talcahuano District. The bomb, which exploded and caused property damage worth 50,000 pesos, was placed at a chapel of the Church of Jesus Christ of Latter-Day Saints located at No 3856 Gomez Carreno Street. The shock wave destroyed a wall, the roof, and the windows of the church, but did not cause any injuries. Carabineros bomb squad personnel immediately went to the location and discovered that the bomb was made of 50 grams of an-fo ammonium nitrate-fuel oil blasting agents and a slow fuse.”
Concepcion, 23 Aug 88 “(Santiago Domestic Service) – Police sources have reported that unidentified individuals planted a bomb in front of a Mormon Church in Talcahuano District. The bomb, which exploded and caused property damage worth 50,000 pesos, was placed at a chapel of the Church of Jesus Christ of Latter-Day Saints located at No 3856 Gomez Carrenno Street.

The shock wave destroyed a wall, the roof, and the windows of the church, but did not cause any injuries. Carabineros bomb squad personnel immediately went to the location and discovered that the bomb was made of 50 grams of an-fo ammonium nitrate-fuel oil blasting agents and a slow fuse.” — MUC4 story TST4-MUC4-0001
The “Terrorist Attack” Template

<table>
<thead>
<tr>
<th>Terrorist Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Attack:</td>
</tr>
<tr>
<td>Perpetrator:</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>Casualties:</td>
</tr>
<tr>
<td>Injured:</td>
</tr>
<tr>
<td>Material Damage:</td>
</tr>
</tbody>
</table>

Prof Jochen L Leidner, MA MPhil PhD FRGS ⟨leidner@acm.org⟩ Information Extraction and Ethics
Terrorist Attack

<table>
<thead>
<tr>
<th>Type of Attack:</th>
<th>bomb (ATTACK>BOMBING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpetrator:</td>
<td>unidentified individuals (unknown)</td>
</tr>
<tr>
<td>Target:</td>
<td>a Mormon church</td>
</tr>
<tr>
<td>Location:</td>
<td>Talcahuano District (Chile>Talcahuano)</td>
</tr>
<tr>
<td>Time:</td>
<td>23 Aug 88 (1988-08-23 00:00:00)</td>
</tr>
<tr>
<td>Casualties:</td>
<td>__________ (0)</td>
</tr>
<tr>
<td>Injured:</td>
<td>did not cause any injuries (0)</td>
</tr>
<tr>
<td>Material Damage:</td>
<td>property worth 50,000 pesos (50000)</td>
</tr>
</tbody>
</table>
A Short History of Information Extraction

- 1981: NYU “Linguistic String” project (N. Sager)
- 1982: DeJong’s FRUMP system: ‘sketchy scripts’
- Carnegie Group build JASPER IE system for Reuters (Andersen et al., 1986)
- 1987/1989: MUCK I+II: Naval operations messages
- 1991-1998 MUC 3-7: Message Understanding Contest
- 2000-2004: ACE: Automatic Content Extraction
 - from text spans to abstract entities
 - English, Chinese, Arabic
- 2010s: First neural approaches to IE
- **Preprocessor/Tokenizer**: split story into units and ultimately word tokens

- **Gazetteer**: lexical look-up of important (to your task) words/phrases

- **POS tagger**: tag/disambiguate words w.r.t. parts of speech

- **Chunk parser**: find basic noun and verb phrases

- **Named entity tagger**: identify and classify proper names

- **Relationship tagger**: find relations between entities

- **Event Template Analyzer**: populate fact/event templates

 The result is a **structured fact/event database**
Rule-based: human experts (computational linguists) manually write general linguistic rules and task-specific extraction rules. Trigger keywords, regular expressions, pattern/action, (cascaded) Finite State Transducers (FSTs)

Supervised Machine learning-based: humans (domain experts) manually annotate text spans indicating entities, relations, facts etc. in a training corpus, and an expert (computational linguist) formulates a set of features; these get used to extract information if statistically correlated with classes of entities, relations etc. sought.

Insight: shallow processing works well: SRI Tacitus \rightarrow SRI FASTUS (Hobbs et al. 1992)
killing of <HumanTarget>
<GovtOfficial> accused <PerpOrg>
bomb was placed by <Perp>
on <PhysicalTarget>
<Perp> attacked <HumanTarget>
<PhysicalTarget> with <Device>
<HumanTarget> was injured
<HumanTarget>’s body
Template Element Recognition (TE): extract information pertaining to organizations, persons and artifacts (NE tagging, parsing)

Relationship Extraction (RE): extract information about how individual entities stand in relationship to each other, drawing on a pre-defined inventory of relation types

Scenario Template Recognition (ST): extract pre-specified event information and relate the event to particular organizations, persons and/or artifacts (slot fillers)

Information for filling a template often often spread across several sentences
Experimental Methodology

- Create a **gold data** set reference corpus with **ground truth**.
- Split gold data into three parts:
 - **development/training set**: used to study the data, train machine learning processes; can be inspected.
 - **development test** ("devtest") set: cannot be inspected, cannot be used for training; repeatedly used to measure improvements of system quality by comparing system output with ground truth.
 - **test set**: cannot be inspected; only used once for final evaluation run at project end. Completely **unseen data** (to the system and developers).
- Gold data split:
 could be e.g. 80% train : 10% dev-test : 10% test
GATE: General Architecture for Text Engineering - an open-source framework for language engineering

Under development at the University of Sheffield for a long time (Cunningham et al., 2013)

Current version: 8.4.2 (as of today) available from http://gate.ac.uk

Java-based platform comprising GUI, APIs, and a workflow system

GATE comes with pre-existing, contributed data (*Language Resources*) and components (*Processing Resources*)
Constructing IE Pipelines with GATE (1/2)

GATE 7.1 build 4485 started at Mon Sep 30 07:59:10 BST 2013
and using java 1.7.0_25 Oracle Corporation on Linux 3.2.0-54-generic-pae.
CREOLE plugin loaded: file:/opt/gate-7.1-build4485-BIN/plugins/LingPipe/
CREOLE plugin loaded: file:/opt/gate-7.1-build4485-BIN/plugins/OpenNLP/
Constructing IE Pipelines with GATE (2/2)
JAPE Introduction

- Part of the GATE platform
- Language to specify FSTs following the “patterns & actions” paradigm
- Sets of rules, broken down into processing phases
- Each rule tests matching conditions and typically adds annotations in the affirmative case
Jape rules are organized into phases (cascades). Each JAPE rule has three parts:

- **Header**: name of the rule
- **Left-Hand Side (LHS)**: pattern
- **Right-Hand Side (RHS)**: action – e.g. add annotations

Structure:

```
Rule: TagUnknownName
(
  {Token.category == NNP}
):x
-->
  :x.Unknown = { kind = "PN", rule = TagUnknownName }
```

See also: http://gate.ac.uk/sale/tao/splitch8.html#chap:jape
Phase: UrlPre
Input: Token SpaceToken
/* important: specify input! */
Options: control = appelt

Rule: Urlpre
((({Token.string == "http"}) |
 {Token.string == "ftp"})
 {Token.string == ":"}
 {Token.string == "/"}
 {Token.string == "/"}
) |
({Token.string == "www"}
 {Token.string == "."}
)
):urlpre
-->
:urlpre.UrlPre = {rule = "UrlPre"}
Gazetteers in GATE

How to use lists of keywords/phrases:

- Create a *.def file listing all gazetteers (with their major/minor categories):

 cities.lst:location:city
 organizations.lst:organization
 surnames.lst:name:surname
 forenames.lst:name:forename

- List one key phrase, name or keyword per line in each of these files, e.g. in cities.lst:

 Abu Dhabi
 Berlin
 Chicago
 Frankfurt
 ...

- Create a gazetteer Processing Resource in your application pipeline that references your *.def file.
Common Machine Learning Methods for Information Extraction

- Hidden Markov Models (HMMs)
- Conditional Random Fields (CRF)
- Support Vector Machine (SVM)
- Artificial Neural Networks (NNs), in particular “deep” neural nets for sequence tagging (RNN, LSTM)
Annotate word tokens with inside/outside of class information:
The_0 Oracle_I-ORG CEO_0 ’s_0 name_0
is_0 Larry_I-PER Ellison_I-PER ._0
(horizontal)
or:
The 0
Oracle I-ORG
CEO 0
...
(vertical)

B tag used to demarcate adjacent I tags (otherwise, two adjacent “I” tokens part of the same text span could not be distinguished from the case of two adjacent, separate text spans)
Chase Manhattan and its merger partner J.P. Morgan and Citibank, which was involved in moving about $100 million for Raul Salinas de Gortari, brother of a former Mexican president, to banks in Switzerland, are also expected to sign on.
Feature: a piece of evidence intended to help the classifier map the input to the right target class

Feature vector: a vector \vec{F}, the components $F_j = \phi_j(d_i)$, of which are results applying a feature function to the data point d_i

Example: “Spam versus Ham” email?
- number of “!”s included in email body
- length of the email in characters
- does the word “cash” occur in the title or body?

Example feature vectors:
- $(2, 2392, \text{no}) \mapsto \text{HAM (genuine e-mail)}$
- $(4, 520, \text{yes}) \mapsto \text{SPAM}$
- $(1, 2392, \text{no}) \mapsto \text{HAM}$
- $(0, 16337, \text{no}) \mapsto \text{HAM}$
- $(1, 6320, \text{yes}) \mapsto \text{SPAM}$
In English:

- Token begins with capital letter: \[[A-Z][a-z]+\]
- Token ends in characters -man
- Token to the left is from list Mr., Mrs., Miss, Dr., Prof., Sir, Lord, CEO, …
- Token to the right is academic title, affiliation: BSc, Ph.D., M.A., FRS, M.P.
- Tokens to the right are [,]? who
- Token is from a list (gazetteer) of names
Training a Model

- Determine the model's parameters from data: induction
- Training corpus has counts, from which model probabilities are computed
- Smoothing: re-distribution of probability mass from seen to unseen events (to avoid zero probabilities, which make any product go zero)
HMMs for IE e.g. in Nymble (Bikel et al., 1997)

Not shown: initial transitions/probabilities

Most likely state (label) sequence (Viterbi alg.):

Larry Ellison is the CEO of Oracle Corporation.

I-PER I-PER O O O I-ORG I-ORG O
<table>
<thead>
<tr>
<th>Word Feature</th>
<th>Example Text</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoDigitNum</td>
<td>90</td>
<td>Two-digit year</td>
</tr>
<tr>
<td>fourDigitNum</td>
<td>1990</td>
<td>Four digit year</td>
</tr>
<tr>
<td>containsDigitAndAlpha</td>
<td>A8956-67</td>
<td>Product code</td>
</tr>
<tr>
<td>containsDigitAndDash</td>
<td>09-96</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndSlash</td>
<td>11/9/89</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndComma</td>
<td>23,000.00</td>
<td>Monetary amount</td>
</tr>
<tr>
<td>containsDigitAndPeriod</td>
<td>1.00</td>
<td>Monetary amount, percentage</td>
</tr>
<tr>
<td>otherNum</td>
<td>456789</td>
<td>Other number</td>
</tr>
<tr>
<td>allCaps</td>
<td>BBN</td>
<td>Organization</td>
</tr>
<tr>
<td>capPeriod</td>
<td>M.</td>
<td>Person name initial</td>
</tr>
<tr>
<td>firstWord</td>
<td>first word of sentence</td>
<td>No useful capitalization information</td>
</tr>
<tr>
<td>initCap</td>
<td>Sally</td>
<td>Capitalized word</td>
</tr>
<tr>
<td>lowerCase</td>
<td>can</td>
<td>Uncapitalized word</td>
</tr>
<tr>
<td>other</td>
<td>,</td>
<td>Punctuation marks, all other words</td>
</tr>
</tbody>
</table>
There are many application domains for IE systems:

- Bio-medical IE applications (genes & proteins)
- Financial IE applications (mergers & acquisitions, CEO changes)
- Legal IE applications (judges & attorneys)
- Intelligence & Police IE applications (terrorists & crimes)
- e-Commerce IE applications (brands & products)
(Named) Entity Tagging: extracting mentions of things (people, places, ...)

Relation Extraction: extracting mentions of relationships between things (son-of, CEO-of, located-in, famous-for)

Event Extraction: something happens (event of type T at time t and in location ℓ)
Event Extraction from News with Neural Models (Nugent et al., 2017) (1/2)
Wildfires in CA

Conflicts in Afghanistan
Current Developments & Future Directions in IE

- Utilizing robust syntactic and semantic components where available
- From classic IE to open IE
- From small data sets to Web-scale data sets (bigger data and a simpler algorithm usually beats smaller data and a more sophisticated algorithm!)
- Knowledge-rich methods are going to be combined with machine learning methods
- Use of word embeddings and deep (= multiple hidden layers) neural networks,
In this session, we learned:

- what information extraction is, and a bit of its history
- the difference between rule-based and machine learning approaches
- how named entities can be extracted from text
Bird/Klein/Loper (2009), *Natural Language Processing with Python*, Sebastopol, CA: O’Reilly

Hastie, Tibshirani and Friedman (2009), *The Elements of Statistical Learning (2nd ed.)*, New York, NY: Springer

Jurafsky/Martin (2008), *Speech and Language Processing (2nd ed.)*, Upper Saddle River, NJ: Prentice Hall

Pustejovsky/Stubbs (2012), Natural Language Annotation for Machine Learning, Sebastopol, CA: O’Reilly, Chapters 5-6 and 8

Zanasi (2005), Text Mining and its Applications to Intelligence, CRM and Knowledge Management, Southampton: WITPress
Some Well-Known IE Systems

<table>
<thead>
<tr>
<th>SAM</th>
<th>PAM</th>
<th>FRUMP</th>
<th>ATRANS</th>
<th>Proteus</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUM</td>
<td>Tabula Rasa</td>
<td>LOLITA</td>
<td>Scrabble</td>
<td>NameTag</td>
</tr>
<tr>
<td>Alembic</td>
<td>Hasten</td>
<td>NLToolset</td>
<td>IE²</td>
<td>TurboTag</td>
</tr>
<tr>
<td>SIFT</td>
<td>TASC</td>
<td>FACILE</td>
<td>AutoSlog</td>
<td>ANNIE</td>
</tr>
<tr>
<td>LasIE</td>
<td>Elie</td>
<td>NetOwl</td>
<td>Oki</td>
<td>BALIE</td>
</tr>
<tr>
<td>Diderot</td>
<td>JASPER</td>
<td>Tacitus</td>
<td>FASTUS</td>
<td>SCISOR</td>
</tr>
<tr>
<td>Circus</td>
<td>REES</td>
<td>Identifinder</td>
<td>Nymble</td>
<td>InfoXtract</td>
</tr>
</tbody>
</table>
Homework: Constructing IE Pipelines with GATE (1/2)

- File → New Corpus Pipeline, give name e.g. TestIE
- Processing Resources → Add Annie
- Processing Resources → Add Document Reset, ANNIE Sentence Splitter, ANNIE English Tokeniser, ANNIE Gazetteer, and ANNIE NE Transducer.
- Double click on TestIE and move the components Document Reset, ANNIE Sentence Splitter, ANNIE English Tokeniser, ANNIE Gazetteer, and ANNIE NE Transducer from the left list to the right using ”>>”; ensure the order is exactly as given here from top to bottom!
- Language Resources → Add Corpus Document, click on sourceURL and select a text file to process
Homework: Constructing IE Pipelines with GATE (2/2)

- Language Resources → Add Corpus, then add document created above via drop-down menu to the empty corpus
- Double-click on TestIE Application, select corpus in drop-down and click Run this Application
- Double-click on your test document under Language Resources and select the annotations (PERSON, ORGANIZATION) you would like to view
Sequence Tagging

• It is one thing to classify a data point in isolation
 Example (1): “dinosaur” \mapsto noun

• It is quite another thing to classify, taking into account context
 Example (2a): “(let’s) walk (there)” \mapsto walk/VVB
 Example (2b): “(a) walk (in the rain)” \mapsto walk/NN

• If “walk” has two possible readings, how can we compute the right one? \rightarrow **Ambiguity**

• Example (3): I can can the can . \mapsto
 I/PRP can/AUX can/VVB the/AT can/NN ./.
Simple probabilistic finite-state model of the weather (Markov Chain)

3 States: s1: rainy, s2: cloudy, s3: sunny

Transitions labelled with probabilities $a_{ij} \geq 0, \forall i, j \leq N, \sum_{j=1}^{N} a_{ij} = 1, \forall i$

What is the probability of the observation sequence $O = (sunny, sunny, sunny, rainy, rainy, sunny, cloudy, sunny)$?

$$P(O|Model) = P[s3, s3, s3, s1, s1, s3, s2, s3|Model]$$

$$= \pi_3 a_{33}^2 a_{31} q_{11} a_{11} a_{13} a_{32} a_{23}$$

$$= 1.0 \cdot 0.8^2 \cdot 0.1 \cdot 0.4 \cdot 0.3 \cdot 0.1 \cdot 0.2$$

$$= 1.536 \times 10^{-4}$$
A Hidden Markov Model $\lambda = (Q, \Sigma, A, B, \Pi)$ is formally defined as

- a set of N hidden states $Q = (q_1, \ldots, q_N)$, $N = |Q|$
- a set Σ of M observation symbols, $M = |\Sigma|$
- a state-transition distribution (transition probabilities)
 $A = \{a_{ij} = P(q_{t+1} = j | q_t = i)\}, 1 \leq i, j \leq N$
- an observation symbol probability distribution (emission probabilities)
 $B = \{b_{ik} = b_o(o_k) = P(o_k | q_i)\}, 1 \leq k \leq M, o_k \in \Sigma$ (the probability that the output is o_k, given that the current state is q_i)
- an initial state distribution
 $\Pi = \{\pi_i = P(q_i | t = 1)\}, 1 \leq i \leq N$
Hidden Markov Models (HMM) – POS Tagging Example

AT
JJ
NN
The
A
An
green
tree
cat
idea
old
beautiful
walks
loves
drinks
...
...
...
...
...
...
...
...
...
.........
......
...
... ...

Prof Jochen L Leidner, MA MPhil PhD FRGS ⟨leidner@acm.org⟩
Information Extraction and Ethics
Three Questions to an HMM

- **Problem 1 (evaluation).** Given the observation sequence $O = (o_1, o_2, \ldots, o_T)$ and a model $\lambda = (Q, \Sigma, A, B, \Pi)$, how do we efficiently compute $P(O|\lambda)$, the probability of a observation sequence, given a model?

- **Problem 2 (decoding).** Given the observation sequence $O = (o_1, o_2, \ldots, o_T)$ and the model λ, how can we find a corresponding state sequence $q^* = q_1, q_2, \ldots, q_T$ that most likely generated O (“optimally explains the observations”)?

- **Problem 3 (learning).** How do we estimate the model parameters A, B and Π so as to maximize $P(O|\lambda)$?
Finding the most likely hidden state sequence, given an observation, requires at first glance exponential runtime complexity ($O(N^n)$), as all possible states are valid hypotheses for each observation, so candidate states/readings multiply.

Luckily, we can find a linear-runtime ($O(n)$) solution using dynamic programming (remembering partial solutions at each step) in a data structure called trellis.

The Viterbi algorithm uses one pass from left to right looking at initial, transition and emission probabilities while storing a history of the locally “best” (most likely) state (back pointer).
Trellis Data Structure

\[a_{ij} \quad b_j (o_{t+1}) \]

\[s_i \quad s_j \]

\[t-1 \quad t \quad t+1 \quad t+2 \]
The Viterbi algorithm (2/2) (Viterbi, 1967)

Let $\delta_t(i) = \max_{q_1, \ldots, q_{t-1}} P[q_1 q_2 \ldots q_{t-1}, q_t=i, o_1 o_2 \ldots o_t | \lambda]$.

1. **Initialization.** (Start with initial state probabilities)

 $\delta_1(i) = \pi_i b_i(o_1), 1 \leq i \leq N$
 $\phi_1(i) = 0$

2. **Recursion.** (main part, see previous slide)

 $\delta_t(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}b_j(o_t)], 2 \leq t \leq T, 1 \leq j \leq N$
 $\phi_t(j) = \arg \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}], 2 \leq t \leq T, 1 \leq j \leq N$

3. **Termination.**

 $P^* = \max_{1 \leq i \leq N} [\delta_T(i)]$
 $q_T^* = \arg \max_{1 \leq i \leq N} [\delta_T(i)]$

4. **Path backtracking** (finding the most likely hidden state sequence).

 $q_t^* = \phi_{t+1}(q_{t+1}^*), t = T - 1, T - 2, \ldots, 1$
Information Extraction and Ethics
Tweet text

<p>| TP | wellbutrin doesn’t even work for me it just makes me really anxious idk why im still taking it |
| TP | Took some ibuprofen that has me so drowsy |
| TP | Insomnia and heart palpitations due to prednisone. Takteng mga side effects 'to. /wrist |
| TP | This Vicodin is making me feel like a tweaker because I’m so itchy! |
| TP | guys i took an ibuprofen 2 days ago and i still have heart palpitations |
| TN | I once gave a treatment to some patients with glutathione which I knew later clinic use it. Most of them have nausea for 5 mins after inj. |
| FN | I seriously never have any energy thanks accutane lol @probs_accutane all I want to do is sleep |
| FP | My mouth taste like 1200 Mg’s of ibuprofen yet my head still hurts and I’m still feeling dizzy. Wtf |
| FP | @ash_hein they gave me Tylenol 3s & yea kinda my mouth still hurts a little & I’m still swollen |</p>
<table>
<thead>
<tr>
<th>Model</th>
<th>C</th>
<th>w^+</th>
<th>P</th>
<th>R</th>
<th>F1</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td>0.269</td>
<td>0.683</td>
<td>0.386</td>
<td>0.267</td>
<td>0.705</td>
<td>0.387</td>
</tr>
<tr>
<td>BIN_NGRAM1,2</td>
<td>0.050</td>
<td>8</td>
<td>0.636</td>
<td>0.504</td>
<td>0.562</td>
<td>0.560</td>
<td>0.540</td>
<td>0.549*</td>
</tr>
<tr>
<td>ALL FEATURES</td>
<td>0.025</td>
<td>9</td>
<td>0.573</td>
<td>0.590</td>
<td>0.582</td>
<td>0.550</td>
<td>0.669</td>
<td>0.604*†</td>
</tr>
</tbody>
</table>

Graph: F1 on development set and F1 on test set vs. training set size.
Where to Get Linguistic Gold Data From

- Search the Linguistic Data Consortium (LDC) catalog (http://catalog.ldc.upenn.edu)
- Browse DFKI’s LT World http://www.lt-world.org
- Browse MetaNet (http://www.meta-net.eu)
- Browse the ACL Anthology (http://acl.ldc.upenn.edu), ACM Digital Library (http://dl.acm.org) and IEEEExplore (http://ieeexplore.ieee.org)
 - some papers on a topic may contain associated data
 - some conferences, notably the bi-annual LREC, specialize on presenting new linguistic resources
- Contact expert researchers
- Recruit linguists/domain experts
- Crowdsourcing