Dependency Parsing
COM4513/6513 Natural Language Processing

Nikos Aletras
n.aletras@sheffield.ac.uk
@nikeletras

Computer Science Department

Week 5
Spring 2020
In previous lectures...

- **Text Classification**: Given an instance \(x \) (e.g. document), predict a label \(y \in \mathcal{Y} \)
- **Tasks**: sentiment analysis, topic classification, etc.
- **Algorithm**: Logistic Regression
In previous lectures...

- **Sequence labelling**: Given a sequence of words $x = [x_1, \ldots x_N]$, predict a sequence of labels $y \in \mathcal{Y}^N$
- **Tasks**: part of speech tagging, named entity recognition, etc.
- **Algorithms**: Hidden Markov Models, Conditional Random Fields
In this lecture...

- Model richer linguistic representations: **graphs**
- **Dependency parses**: Graphs representing syntactic relations between words in a sentence
In this lecture...

- Model richer linguistic representations: **graphs**
- **Dependency parses:** Graphs representing syntactic relations between words in a sentence
- Two approaches:
 - Graph-based Dependency Parsing
 - Transition-based Dependency Parsing
Relation extraction, e.g. identify entity pairs (AM, Arctic Monkeys), (Abbey Road, Beatles), (Different Class, Pulp) with the relation `music_album_by`

- **Question answering**
- **Sentiment analysis**
What is a Dependency Parse?

- **Dependency parse (or tree):** Graph representing syntactic relations between words in a sentence
What is a Dependency Parse?

- **Dependency parse (or tree):** Graph representing syntactic relations between words in a sentence
- **Nodes (or vertices):** Words in a sentence
- **Edges (or arcs):** Syntactic relations between words, e.g. *dog is the subject* (*nsubj*) of *likes* (*list of standard dependency relations*)
What is a Dependency Parse?

- **Dependency parse (or tree):** Graph representing syntactic relations between words in a sentence
- **Nodes (or vertices):** Words in a sentence
- **Edges (or arcs):** Syntactic relations between words, e.g. dog is the subject (nsubj) of likes (list of standard dependency relations)
- **Dependency Parsing:** Automatically identify the syntactic relations between words in a sentence
Graph constraints

- **Connected:** every word can be reached from any other word ignoring edge directionality
Graph constraints

- **Connected**: every word can be reached from any other word ignoring edge directionality
- **Acyclic**: can’t re-visit the same word on a directed path
Graph constraints

- **Connected:** every word can be reached from any other word ignoring edge directionality
- **Acyclic:** can’t re-visit the same word on a directed path
- **Single-Head:** every word can have only one head
Well-formed Dependency Parse?

- Connected?

Diagram:

```
Economic news had little effect on financial markets .
```

- Acyclic? YES
- Single-headed? YES
- Connected? NO
Well-formed Dependency Parse?

- Connected? NO

Economic news had little effect on financial markets.
Well-formed Dependency Parse?

- Connected? NO
- Acyclic?
Well-formed Dependency Parse?

- Connected? NO
- Acyclic? YES
Well-formed Dependency Parse?

- Connected? NO
- Acyclic? YES
- Single-headed?
Well-formed Dependency Parse?

- Connected? NO
- Acyclic? YES
- Single-headed? YES
- Solution?
Add a special root node with edges to any nodes without heads (main verb and punctuation).
Training data is pairs of word sequences (sentences) and dependency trees:

\[D_{\text{train}} = \{(x_1, G^1_x) \ldots (x^M, G^M_x)\}\]

\[x^m = [x_1, \ldots, x_N] \]

graph \(G_x = (V_x, A_x) \)

vertices \(V_x = \{0, 1, \ldots, N\} \)

edges \(A_x = \{(i, j, k) | i, j \in V, k \in L(\text{labels})\} \)
Dependency Parsing: Problem setup

Training data is pairs of word sequences (sentences) and dependency trees:

\[D_{\text{train}} = \{ (x^1, G^1_x) \ldots (x^M, G^M_x) \} \]
\[x^m = [x_1, \ldots x_N] \]

graph \(G_x = (V_x, A_x) \)

vertices \(V_x = \{0, 1, \ldots, N\} \)

edges \(A_x = \{ (i, j, k) | i, j \in V, k \in L(\text{labels}) \} \)

We want to learn a model to predict the best graph:

\[\hat{G}_x = \arg \max_{G_x \in G_x} \text{score}(G_x, x) \]
Learning a dependency parser

We want to learn a model to predict the best graph:

\[
\hat{G}_x = \arg \max_{G_x \in G_x} \text{score}(G_x, x)
\]

where the G_x is a well-formed dependency tree.

■ Can we learn it using what we know so far?
Learning a dependency parser

We want to learn a model to predict the best graph:

$$\hat{G}_x = \arg \max_{G_x \in G_x} \text{score}(G_x, x)$$

where the G_x is a well-formed dependency tree.

- **Can we learn it using what we know so far?** Enumeration over all possible graphs will be expensive.
We want to learn a model to predict the best graph:

$$\hat{G}_x = \arg \max_{G_x \in G_x} \text{score}(G_x, x)$$

where the G_x is a well-formed dependency tree.

- Can we learn it using what we know so far? Enumeration over all possible graphs will be expensive.
- How about a classifier that predicts each edge?
Learning a dependency parser

We want to learn a model to predict the best graph:

$$\hat{G}_x = \arg \max_{G_x \in G_x} \text{score}(G_x, x)$$

where the G_x is a well-formed dependency tree.

- **Can we learn it using what we know so far?** Enumeration over all possible graphs will be expensive.
- **How about a classifier that predicts each edge?** Maybe. But predicting an edge makes some edges invalid due to the acyclic and single-head constraints.
Maximum Spanning Tree

- **Spanning Tree**: In graph theory, a spanning tree \(T \) of an undirected graph \(G \) is a subgraph that includes all of the vertices of \(G \), with the minimum possible number of edges.
Maximum Spanning Tree

- **Spanning Tree**: In graph theory, a spanning tree T of an undirected graph G is a subgraph that includes all of the vertices of G, with the minimum possible number of edges.

- **Tree**: In computer science, a tree is a widely used data structure (Abstract Data Type) that simulates a hierarchical tree structure, with a root value and subtrees of children with a parent node, represented as a set of linked nodes.
Maximum Spanning Tree

Score all edges, but keep only the max spanning tree using Chu-Liu-Edmonds algorithm, a modification to Kruskal’s algorithm for extracting Maximum Spanning Trees.

Exact solution in $O(N^2)$ time using Chu-Liu-Edmonds.
Kruskal’s algorithm

Input scored edges E

sort E by cost (opposit of score)

$G = \{\}$

while G not spanning **do:**

 pop the next edge e

 if connecting different trees :

 add e to G

Return G
Graph-based Dependency Parsing

Decompose the graph score into arc scores:

\[\hat{G}_x = \arg \max_{G_x \in \mathcal{G}_x} \text{score}(G_x, x) \]

\[= \arg \max_{G_x \in \mathcal{G}_x} \mathbf{w} \cdot \Phi(G_x, x) \quad \text{(linear model)} \]

\[= \arg \max_{G_x \in \mathcal{G}_x} \sum_{(i,j,l) \in A_x} \mathbf{w} \cdot \phi((i,j,l), x) \quad \text{(arc-factored)} \]

Can learn the weights with a Conditional Random Field!
Feature Representation

What should $\phi((\text{head, dependent, label}), \mathbf{x})$ be?

- **unigram**: head=had, head=VERB
Feature Representation

What should $\phi((\text{head}, \text{dependent}, \text{label}), \mathbf{x})$ be?

- **unigram**: head=had, head=VERB
- **bigram**: head=had & dependent=effect
What should $\phi((\text{head}, \text{dependent}, \text{label}), \mathbf{x})$ be?

- **unigram**: head=had, head=VERB
- **bigram**: head=had & dependent=effect
- head=VERB & dependent=NOUN & between=ADJ
What should $\phi((\text{head}, \text{dependent}, \text{label}), \mathbf{x})$ be?

- **unigram**: head=had, head=VERB
- **bigram**: head=had & dependent=effect
- head=VERB & dependent=NOUN & between=ADJ
- head=had & label=dobj & other-label=nsubj
What should $\phi((\text{head}, \text{dependent}, \text{label}), \mathbf{x})$ be?

- **unigram**: head=had, head=VERB
- **bigram**: head=had & dependent=effect
- head=VERB & dependent=NOUN & between=ADJ
- head=had & label=dobj & other-label=nsubj

NO!!! Breaks the arc-factored scoring
Even though inference and learning are global, features are localised to arcs.

Can we have more global features?
More Global models

- Even though inference and learning are global, features are localised to arcs.

- **Can we have more global features?** Yes we can! Consider subgraphs spanning a few edges. But inference becomes harder, requiring more complex dynamic programs and clever approximations.

- **Is it worth it?** Syntactic parsing has many applications, thus better compromises between speed and accuracy are always welcome!
Graph-based dependency parsing restricts the features to perform joint inference efficiently.
Graph-based dependency parsing restricts the features to perform joint inference efficiently.

Transition-based dependency parsing trades joint inference for feature flexibility.
Transition-based Dependency Parsing

- Graph-based dependency parsing restricts the features to perform joint inference efficiently.
- **Transition-based dependency parsing** trades joint inference for feature flexibility.
- No more argmax over graphs, just use a classifier with any features we want!
Joint vs incremental prediction

Joint: score (and enumerate) complete outputs (graphs)
Joint vs incremental prediction

Incremental: predict a sequence of actions (transitions) constructing the output

\[\text{structured output } y \]

\[\text{actions } \alpha = \alpha_1 \ldots \alpha_T \]

\[\text{input sentence } x \]
The actions \mathcal{A} the classifier f can predict and their effect on the state which tracks the prediction: $S_{t+1} = S_1(\alpha_1 \ldots \alpha_t)$
The actions \mathcal{A} the classifier f can predict and their effect on the state which tracks the prediction: $S_{t+1} = S_1(\alpha_1 \ldots \alpha_t)$

What should the actions (transitions) be for dependency parsing?
Transition system setup

- **Input:** Vertices $V_x = \{0, 1, ..., N\}$ (words sentence x)
- **State** $S = (Stack, B, A)$:
 - Arcs A (dependencies predicted so far)
 - Buffer Buf (words left to process)
 - Stack $Stack$ (last-in, first out memory)
- Initial state: $S_0 = ([], [0, 1, ..., N], \{}\})$
- Final state: $S_{final} = (Stack, [], A)$
Transition system

Shift \((Stack, i|Buf, A) \rightarrow (Stack|i, Buf, A)\): push next word from the buffer \((i)\) to stack
Transition system

Shift \((Stack, i|Buf, A) \rightarrow (Stack|i, Buf, A)\): push next word from the buffer \(i\) to stack

Reduce \((Stack|i, Buf, A) \rightarrow (Stack, Buf, A)\): pop word top of the stack \(i\) if it has a head
Transition system

Shift \((Stack, i|Buf, A) \rightarrow (Stack|i, Buf, A)\): push next word from the buffer \((i)\) to stack

Reduce \((Stack|i, Buf, A) \rightarrow (Stack, Buf, A)\): pop word top of the stack \((i)\) if it has a head

Right-Arc(\textit{label}) \((Stack|i,j|Buf, A) \rightarrow (Stack|i|j, Buf, A \cup \{(i,j,l)\})\): create edge \((i,j, label)\) between top of the stack \((i)\) and next in buffer \((j)\), push \(j\)
Transition system

Shift \((\text{Stack}, i|\text{Buf}, A) \rightarrow (\text{Stack}|i, \text{Buf}, A)\): push next word from the buffer \((i)\) to stack

Reduce \((\text{Stack}|i, \text{Buf}, A) \rightarrow (\text{Stack}, \text{Buf}, A)\): pop word top of the stack \((i)\) if it has a head

Right-Arc\((\text{label})\) \((\text{Stack}|i,j|\text{Buf}, A) \rightarrow (\text{Stack}|i|j, \text{Buf}, A \cup \{(i,j,l)\})\): create edge \((i,j,\text{label})\) between top of the stack \((i)\) and next in buffer \((j)\), push \(j\)

Left-Arc\((\text{label})\) \((\text{Stack}|i,j|\text{Buf}, A) \rightarrow (\text{Stack}, j|\text{Buf}, A \cup \{(j,i,l)\})\): create edge \((j,i,\text{label})\) and pop \(i\), if \(i\) has no head
Example

Stack = []
Buffer = [ROOT, Economic, news, had, little, effect, on, financial, markets, .]

Action?
Example

Stack = []
Buffer = [ROOT, Economic, news, had, little, effect, on, financial, markets, .]

Action? Shift
Example

Stack = [ROOT]
Buffer = [Economic, news, had, little, effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT]
Buffer = [Economic, news, had, little, effect, on, financial, markets, .]

Action? Shift
Example

Stack = [ROOT, Economic]
Buffer = [news, had, little, effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT, Economic]
Buffer = [news, had, little, effect, on, financial, markets, .]

Action? Left-Arc(amod)
Example

Stack = [ROOT]
Buffer = [news, had, little, effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT]
Buffer = [news, had, little, effect, on, financial, markets, .]

Action? Shift
Example

Stack = [ROOT, news]
Buffer = [had, little, effect, on, financial, markets, .]

Action?
Stack = [ROOT, news]
Buffer = [had, little, effect, on, financial, markets, .]

Action? Left-Arc(nsubj)
Example

Stack = [ROOT]
Buffer = [had, little, effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT]
Buffer = [had, little, effect, on, financial, markets, .]

Action? Right-Arc(root)
Example

Stack = [ROOT, had]
Buffer = [little, effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT, had]
Buffer = [little, effect, on, financial, markets, .]

Action? Shift
Example

Stack = [ROOT, had, little]
Buffer = [effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT, had, little]
Buffer = [effect, on, financial, markets, .]

Action? Left-Arc(\textit{amod})
Example

Stack = [ROOT, had]
Buffer = [effect, on, financial, markets, .]

Action?
Example

Stack = [ROOT, had]
Buffer = [effect, on, financial, markets, .]

Action? Right-Arc(dobj)
Example

Stack = [ROOT, had, effect]
Buffer = [on, financial, markets, .]

Action?
Example

Stack = [ROOT, had, effect]
Buffer = [on, financial, markets, .]

Action? let’s fast-forward...
Example

Stack = [ROOT, had, .]
Buffer = []

Empty buffer.
Example

Stack = [ROOT, had, .]
Buffer = []

Empty buffer. DONE!
Other transition systems?

- This was the arc-eager system. Others:
Other transition systems?

- This was the arc-eager system. Others:
 - arc-standard (3 actions)
Other transition systems?

- This was the arc-eager system. Others:
 - arc-standard (3 actions)
 - easy-first (not left-to-right), etc.

- All operate with actions combining:
 - moving words from the buffer to the stack and back (shift/un-shift)
 - popping words from the stack (reduce)
 - creating labeled arcs left and right

Intuition: Define actions that are easy to learn
Other transition systems?

- This was the arc-eager system. Others:
 - arc-standard (3 actions)
 - easy-first (not left-to-right), etc.
- All operate with actions combining:
 - moving words from the buffer to the stack and back (shift/un-shift)
 - popping words from the stack (reduce)
 - creating labeled arcs left and right
- Intuition: Define actions that are easy to learn
Transition-based Dependency Parsing

Input: sentence \(x \)

state \(S_1 = initialize(x); \) timestep \(t = 1 \)

while \(S_t \) not final **do**

\[
\text{action } \alpha_t = \arg \max_{\alpha \in A} f(\alpha, S_t)
\]

\[
S_{t+1} = S_t(\alpha_t); \ t = t + 1
\]

What is \(f \)?
Input: sentence x

state $S_1 = initialize(x)$; timestep $t = 1$

while S_t not final do

 action $\alpha_t = \arg \max_{\alpha \in A} f(\alpha, S_t)$

 $S_{t+1} = S_t(\alpha_t)$; $t = t + 1$

What is f? A multiclass classifier
What do we need to learn it?
Input: sentence \(x \)

\[state \ S_1 = \text{initialize}(x); \ \text{timestep} \ t = 1 \]

while \(S_t \) not final do

\[action \ \alpha_t = \arg \max_{\alpha \in A} f(\alpha, S_t) \]

\[S_{t+1} = S_t(\alpha_t); \ t = t + 1 \]

What is \(f \)? A multiclass classifier
What do we need to learn it?

- learning algorithm (e.g. logistic regression)
- labelled training data
- feature representation
What are the right actions?

We only have sentences labelled with graphs:

\[D_{\text{train}} = \{(x^1, G^1_x)\ldots(x^M, G^M_x)\} \]
What are the right actions?

We only have sentences labelled with graphs:
\[D_{\text{train}} = \{(x^1, G^1_x) \ldots (x^M, G^M_x)\} \]

Ask an oracle to tell us the actions constructing the graph!
What are the right actions?

We only have sentences labelled with graphs:

\[D_{\text{train}} = \{(x_1, G_{x_1}^1)\ldots(x_M, G_{x_M}^M)\} \]

Ask an oracle to tell us the actions constructing the graph!

In our case, a set of rules comparing the current state
\[S = (\text{Stack}, \text{Buffer}, \text{ArcsPredicted}) \]
with \(G_x \) returning the correct action as label.
Learning from an oracle

Given a labelled sentence and a transition system, an oracle returns states labelled with the correct actions.

\[D_{train} = \{ (x^1, G_x^1), \ldots, (x^M, G_x^M) \} \]
\[x^m = [x_1, \ldots, x_N] \]

graph \(G_x = (V_x, A_x) \)

vertices \(V_x = \{0, 1, \ldots, N\} \)

edges \(A_x = \{ (i, j, k) | i, j \in V, k \in L(labels) \} \)

states \(S^m = [S_1, \ldots, S_T] \)

actions \(\alpha^m = [\alpha_1, \ldots, \alpha_T] \)
What features would help us predict the correction action Right-Arc(\textit{prep})?

\[
\text{Stack} = [\text{ROOT, had, effect}] \\
\text{Buffer} = [\text{on, financial, markets, .}]
\]
Feature Representation

- **Words/PoS in stack and buffer:**

 wordS1=effect, wordB1=on, wordS2=had, posS1=NOUN, etc.
Feature Representation

- **Words/PoS in stack and buffer:**

 wordS1=effect, wordB1=on, wordS2=had, posS1=NOUN, etc.

- **Dependencies so far:**

 depS1=dobj, depLeftChildS1=amod, depRightChildS1=NULL, etc.
Feature Representation

- **Words/PoS in stack and buffer:**

 wordS1=effect, wordB1=on, wordS2=had, posS1=NOUN, etc.

- **Dependencies so far:**

 depS1=dobj, depLeftChildS1=amod, depRightChildS1=NULL, etc.

- **Previous actions:**

 $\alpha_{t-1} = \text{Right-Arc}(dobj)$, etc.
Transition-based vs Graph-based parsing

- Transition-based tends to be better on shorter sentences, graph-based on longer ones.
Transition-based vs Graph-based parsing

- Transition-based tends to be better on shorter sentences, graph-based on longer ones
- Graph-based tends to be better on long-range dependencies

Actually, can we ameliorate the greedy issue? Use Beam Search!
Transition-based vs Graph-based parsing

- Transition-based tends to be better on shorter sentences, graph-based on longer ones.
- Graph-based tends to be better on long-range dependencies.
- Graph-based lacks the rich structural features.

Actually, can we ameliorate the greedy issue? Use Beam Search!
Transition-based vs Graph-based parsing

- Transition-based tends to be better on shorter sentences, graph-based on longer ones
- Graph-based tends to be better on long-range dependencies
- Graph-based lacks the rich structural features
- Transition-based is greedy and suffers from early mistakes

Actually, can we ameliorate the greedy issue? Use Beam Search!
Transition-based vs Graph-based parsing

- Transition-based tends to be better on shorter sentences, graph-based on longer ones
- Graph-based tends to be better on long-range dependencies
- Graph-based lacks the rich structural features
- Transition-based is greedy and suffers from early mistakes
- Actually, can we ameliorate the greedy issue? Use Beam Search!
Non-Projectivity

- Arcs are crossing each other
- long-range dependencies
- free word order
Non-projective Transition-based parsing

- The standard stack-based systems cannot do it.
- But there are extensions:
 - swap actions: word reordering
 - k-planar parsing: use multiple stacks (usually 2)
- Standard graph-based parsing handles non-projectivity.
Incremental Language Processing

- Other problems solved with similar approaches (a.k.a. transition-based, greedy):
 - semantic parsing (converting a natural language utterance to a logical form)
 - coreference resolution

- Whenever you have a problem with a very large space of outputs, worth considering
Evaluation

- **Head-finding word-accuracy:**
 - unlabelled: % of words with the right head
 - labelled: % of words with the right head and label

- **Sentence accuracy:** % of sentences with correct graph
Bibliography

- Chapter 11 from Eisenstein
- Nivre and McDonald’s tutorial slides
- Nivre’s article on deterministic transition-based dependency parsing
- Nivre and McDonald’s paper comparing their approaches
Coming up next week...

- Feed-forward Neural Networks
- Getting ready for Assignment 2!