Feedforward Neural Networks: Revisiting Word Vectors and Text Classification

COM4513/6513 Natural Language Processing

Nikos Aletras
n.aletras@sheffield.ac.uk

@nikaletras

Computer Science Department

Week 6
Spring 2020
The deadline for submitting Assignment 1 is now Friday 27/3, 23:59:59. Note that for people working on Windows, there is no need to test on Linux;

Assignment 2 will be released on Monday 30/3 (deadline after Easter holidays) instead of next week;

Labs have been suspended. For any questions, please use the Google Group. The TAs and me will try to provide answers as quickly as possible;

Lectures are online from now via Blackboard Collaborate (MOLE)
In lecture 2...

Supervised ML
In lecture 2...

- **Machine Learning Algorithm:** Logistic Regression
- Binary and Multi-class
Logistic Regression recap

- Compute the dot product z between the input vector \mathbf{x} and the weight vector \mathbf{w}, and add a bias term b (often ignored):

$$z = \mathbf{w} \cdot \mathbf{x} + b$$
Logistic Regression recap

- Compute the dot product z between the input vector \mathbf{x} and the weight vector \mathbf{w}, and add a bias term b (often ignored):

 $$ z = \mathbf{w} \cdot \mathbf{x} + b $$

- Compute the probability of the positive class using the sigmoid function $\sigma(\cdot)$:

 $$ P(y = 1 | \mathbf{x}; \mathbf{w}) = \sigma(z) = \frac{1}{1 + \exp(-z)} $$

Predict the class with the highest probability:

$$ \hat{y} := \begin{cases} 0 & \text{if } P(y = 1 | \mathbf{x}; \mathbf{w}) < 0.5 \\ 1 & \text{otherwise} \end{cases} $$
Logistic Regression recap

- Compute the dot product z between the input vector x and the weight vector w, and add a bias term b (often ignored):

$$z = w \cdot x + b$$

- Compute the probability of the positive class using the sigmoid function $\sigma(\cdot)$:

$$P(y = 1|x; w) = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

- Predict the class with the highest probability:

$$\hat{y} := \begin{cases} 0 & \text{if } P(y = 1|x; w) < 0.5 \\ 1 & \text{otherwise} \end{cases}$$
Logistic Regression recap

- Extend to multi-class by introducing **weights for each class** and use **softmax** instead of sigmoid
Logistic Regression recap

- Extend to multi-class by introducing **weights for each class** and use **softmax** instead of sigmoid.
- Learn the weights by minimising the **cross-entropy loss** using **Stochastic Gradient Descent**.
Logistic Regression recap

- Extend to multi-class by introducing weights for each class and use softmax instead of sigmoid.
- Learn the weights by minimising the cross-entropy loss using Stochastic Gradient Descent.
- LR directly maps input to output and only captures linear relationships in the data.
In this lecture...

- **Feedforward neural networks** or deep feedforward networks or multilayer perceptrons
In this lecture...

- **Feedforward neural networks** or deep feedforward networks or multilayer perceptrons
- Pass input through a series of intermediate computations (hidden layers) to capture non-linear relationships a.k.a. deep learning

Train with SGD and Backpropagation (for computing the gradients)

NLP applications: word vectors and text classification
In this lecture...

- **Feedforward neural networks** or deep feedforward networks or multilayer perceptrons

- Pass input through a series of intermediate computations (hidden layers) to capture **non-linear relationships** a.k.a. deep learning

- Train with **SGD** and **Backpropagation** (for computing the gradients)
In this lecture...

- Feedforward neural networks or deep feedforward networks or multilayer perceptrons
- Pass input through a series of intermediate computations (hidden layers) to capture non-linear relationships a.k.a. deep learning
- Train with SGD and Backpropagation (for computing the gradients)
- NLP applications: word vectors and text classification
Limitations of linear models

The right-hand dataset is not linearly separable and cannot be learned with a linear model.
Limitations of linear models

The righthand dataset is not linearly separable and cannot be learned with a linear model.
A feedforward network defines a mapping $y = f(x; w)$ between an input x and output y given parameters w.
A feedforward network defines a mapping $y = f(x; w)$ between an input x and output y given parameters w.

Feedforward nets compose together many different functions connected in a chain: $f(x) = f_3(f_2(f_1(x)))$
A feedforward network defines a mapping $y = f(x; w)$ between an input x and output y given parameters w.

Feedforward nets compose together many different functions connected in a chain: $f(x) = f_3(f_2(f_1(x)))$

f_1 is the first hidden layer of the model, f_2 the second and so on. Number of hidden layers denote the depth of the model.
A feedforward network defines a mapping $y = f(x; w)$ between an input x and output y given parameters w.

Feedforward nets compose together many different functions connected in a chain: $f(x) = f_3(f_2(f_1(x)))$

f_1 is the first hidden layer of the model, f_2 the second and so on. Number of hidden layers denote the depth of the model.

Input denote the input layer
A feedforward network defines a mapping $y = f(x; \mathbf{w})$ between an input x and output y given parameters \mathbf{w}.

Feedforward nets compose together many different functions connected in a chain: $f(x) = f_3(f_2(f_1(x)))$

- f_1 is the first **hidden layer** of the model, f_2 the second and so on. Number of hidden layers denote the **depth** of the model.

- **Input** denote the input layer

- The final layer to obtain the prediction is called the **output layer** (e.g. sigmoid, softmax)
Feedforward Neural Network

Input layer (x) Hidden layer (h) Output layer (y)

x_1 x_2 x_3 y_1 y_2
Feedforward Neural Network

Input layer \((\mathbf{x}) \) \hspace{1cm} Hidden layer \((\mathbf{h}) \) \hspace{1cm} Output layer \((\mathbf{y}) \)

\[x_1 \rightarrow \mathbf{h} \]
\[x_2 \rightarrow \mathbf{h} \]
\[x_3 \rightarrow \mathbf{h} \]

\[\mathbf{h} \in \mathbb{R}^d, \quad d = 3 \]

\[\mathbf{h} = g(\mathbf{x}^T \mathbf{W}_h) \]

Extended to deeper architectures:

\[h_i = g(h_{i-1}^T \mathbf{W}_h) \]

\[x \in \mathbb{R}^d, \quad d = 3 \]

\[\mathbf{y}_1 \rightarrow y_1 \]

\[\mathbf{y}_2 \rightarrow y_2 \]
Feedforward Neural Network

\[x \in \mathcal{R}^d, \quad d = 3 \]
\[h = g(x^T W_h) \]
Feedforward Neural Network

Input layer (x) Hidden layer (h) Output layer (y)

x_1 x_2 x_3 y_1 y_2

$x \in \mathcal{R}^d, \ d = 3$
$h = g(x^T W_h)$
$h \in \mathcal{R}^h, \ h =$
Feedforward Neural Network

\[x \in \mathbb{R}^d, \quad d = 3 \]
\[h = g(x^T W_h) \]
\[h \in \mathbb{R}^h, \quad h = 4 \]
\[W_h \in \]
Feedforward Neural Network

\[x \in \mathbb{R}^d, \quad d = 3 \]
\[h = g(x^T W_h) \]
\[h \in \mathbb{R}^h, \quad h = 4 \]
\[W_h \in \mathbb{R}^{d \times h} \]
Feedforward Neural Network

Input layer \((x)\)
Hidden layer \((h)\)
Output layer \((y)\)

\[
x \in \mathcal{R}^d, \quad d = 3
\]
\[
h = g(x^T W_h)
\]
\[
h \in \mathcal{R}^h, \quad h = 4
\]
\[
W_h \in \mathcal{R}^{d \times h}
\]

Extended to deeper architectures:

\[
h_i = g(h_{i-1}^T W_{h_i})
\]
Feedforward Neural Network

Input layer \((x)\)

Hidden layer \((h)\)

Output layer \((y)\)

\[h = g(x^T W_h) \]

\(\text{But what is } g(\cdot) ? \)
Feedforward Neural Network

Input layer \((x)\)

Hidden layer \((h)\)

Output layer \((y)\)

\[
h = g\left(x^T W_h\right) \]
\[
y = \text{softmax}\left(h^T W_o\right) \]
\[
W_o \in \mathbb{R}^{h \times y}\]
Feedforward Neural Network

\[
\begin{align*}
\text{Input layer (x)} & \quad \text{Hidden layer (h)} & \quad \text{Output layer (y)} \\
\begin{aligned}
x_1 & \rightarrow \\
x_2 & \rightarrow \\
x_3 & \rightarrow \\
\end{aligned}
\quad
\begin{aligned}
\text{h} &= g(x^T W_h) \\
y_1 &= \text{softmax}(h^T W_o) \\
y_2 &= \text{softmax}(h^T W_o)
\end{aligned}
\quad
W_o \in \mathcal{R}^{h \times y}
\end{align*}
\]
Feedforward Neural Network

Input layer (x) Hidden layer (h) Output layer (y)

$x_1 \rightarrow$ $x_2 \rightarrow$ $x_3 \rightarrow$

$y_1 \rightarrow$ $y_2 \rightarrow$

$h = g(x^T W_h)$
$y = \text{softmax}(h^T W_o)$
$W_o \in \mathcal{R}^{h \times y}$

But what is $g(\cdot)$?
Activation Functions

- Applied on **hidden units**: elements of h
Activation Functions

- Applied on **hidden units**: elements of h
- **Sigmoid**:

\[g(z) = \sigma(z) \]
Activation Functions

- Applied on **hidden units**: elements of h
- **Sigmoid**:
 \[g(z) = \sigma(z) \]
- **Hyperbolic Tangent**:
 \[g(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1} \]
Activation Functions

- Applied on **hidden units**: elements of h
- **Sigmoid**:
 \[g(z) = \sigma(z) \]
- **Hyperbolic Tangent**:
 \[g(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1} \]
- **Rectified Linear Unit (ReLU)**:
 \[g(z) = \max(0, z) \]
Activation Functions

- Applied on **hidden units**: elements of h
- **Sigmoid**:

 $$g(z) = \sigma(z)$$

- **Hyperbolic Tangent**:

 $$g(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}$$

- **Rectified Linear Unit (ReLU)**:

 $$g(z) = \max(0, z)$$

- And many more...
Activation Functions

\[\sigma(x) \]

\[\tanh(x) \]

\[\text{relu}(x) \]
Training: Stochastic Gradient Descent (SGD) recap

Input: \(D_{\text{train}} = \{(x_1, y_1) \ldots (x_M, y_M)\} \), \(D_{\text{val}} = \{(x_1, y_1) \ldots (x_D, y_D)\} \), learning rate \(\eta \), epochs \(e \), tolerance \(t \)

initialize \(\mathbf{w} \) with zeros

for each epoch \(e \) do

randomise order in \(D_{\text{train}} \)

for each \((x_i, y_i)\) in \(D_{\text{train}} \)

update \(\mathbf{w} = \mathbf{w} - \eta \nabla_{\mathbf{w}} L(\mathbf{w}; x_i; y_i) \)

monitor training and validation loss

if previous validation loss − current validation loss; smaller than \(t \)

break

return \(\mathbf{w} \)
Training: Stochastic Gradient Descent (SGD) recap

Input: $D_{train} = \{(x_1, y_1)\ldots(x_M, y_M)\}, \ D_{val} = \{(x_1, y_1)\ldots(x_D, y_D)\},$

learning rate η, epochs e, tolerance t

initialize w with zeros

for each epoch e **do**

* randomise order in D_{train}

for each (x_i, y_i) **in** D_{train} **do**

* update $w = w - \eta \nabla_w L(w; x_i; y_i)$

monitor training and validation loss

if previous validation loss $-$ current validation loss; smaller than t

break

return w

How to compute the gradient for the weights of the hidden layers?
Training: Backpropagation Algorithm

- **Forward Pass:** Compute and store all the output values of all the hidden units (for each hidden layer) and the output layer.
Training: Backpropagation Algorithm

- **Forward Pass:** Compute and store all the output values of all the hidden units (for each hidden layer) and the output layer.

- **Backward Pass:** Compute the gradients for the output and hidden layers with respect to the cost function L and update the weights for each layer.
Training: SGD and Backpropagation

Input: $D_{\text{train}} = \{(x_1, y_1) \ldots (x_M, y_M)\}$, $D_{\text{val}} = \{(x_1, y_1) \ldots (x_D, y_D)\}$, learning rate η, epochs e, tolerance t

initialise $W_i \in W = \{W_1, \ldots, W_i\}$ for each layer (small random values)

for each epoch e do

- randomise order in D_{train}

for each (x_i, y_i) in D_{train} do

 - layer_outputs = forward_pass($((x_i, y_i), W)$)
 - $W = \text{backward_pass}(((x_i, y_i), W, L, \text{layer_outputs})$

monitor training and validation loss

if prev val loss − current val loss; smaller than t : break

return W
Forward Pass

Propagate the inputs forward to compute the outputs for all layers:

\[h_0 \leftarrow x \text{ (input layer)} \]
Forward Pass

Propagate the inputs forward to compute the outputs for all layers:

\[
\begin{align*}
 h_0 &\leftarrow x \text{ (input layer)} \\
 \text{for layer } k = 1, \ldots, l \text{ do}
\end{align*}
\]
Forward Pass

Propagate the inputs forward to compute the outputs for all layers:

\[h_0 \leftarrow x \] (input layer)

\[\text{for layer } k = 1, \ldots, l \text{ do} \]

\[z_k \leftarrow W_k h_{k-1} \]
\[h_k \leftarrow g(z) \]
\[\text{end for} \]
Forward Pass

Propagate the inputs forward to compute the outputs for all layers:

\[
\begin{align*}
 h_0 &\leftarrow x \text{ (input layer)} \\
 \text{for layer } k = 1, \ldots, l \text{ do} \\
 \quad z_k &\leftarrow W_k h_{k-1} \\
 \quad h_k &\leftarrow g(z) \\
 \text{end for} \\
 \text{Get prediction } \hat{y} = h_l \\
 \text{Compute cross-entropy loss } L(\hat{y}, y) \\
 \text{return } h, z \text{ for all layers}
\end{align*}
\]
Backward Pass

Propagate the gradients backwards from the loss to the input layer (i.e. how each layer’s output should change to reduce error):

Compute gradient on the output layer $g \leftarrow \nabla_{\hat{y}} L$

\[g \leftarrow \nabla_{\hat{y}} L \]
Backward Pass

Propagate the gradients backwards from the loss to the input layer (i.e. how each layer’s output should change to reduce error):

Compute gradient on the output layer $g \leftarrow \nabla_{\hat{y}} L$

for layer $k = l, l - 1, .., 1$ do

Convert the gradient on the layer’s output (h) into a gradient before the activation function (z):

$g \leftarrow \nabla_{z_k} L = g \odot f'(z_k)$ (\odot element-wise, $f'(\cdot)$ deriv.)
Backward Pass

Propagate the gradients backwards from the loss to the input layer (i.e. how each layer’s output should change to reduce error):

Compute gradient on the output layer $\mathbf{g} \leftarrow \nabla \hat{y} L$

for layer $k = l, l-1, .., 1$ do

 Convert the gradient on the layer’s output (\mathbf{h}) into a gradient before the activation function (\mathbf{z}):
 $\mathbf{g} \leftarrow \nabla _{z_k} L = \mathbf{g} \odot f'(z_k)$ (⊙ element-wise, $f'(\cdot)$ deriv.)

Compute gradients on weights:
$\nabla W_k L = \mathbf{g} h_{k-1}$
Backward Pass

Propagate the gradients backwards from the loss to the input layer (i.e. how each layer’s output should change to reduce error):

Compute gradient on the output layer \(\mathbf{g} \leftarrow \nabla_{\hat{y}} L \)

\begin{algorithm}
for layer \(k = l, l - 1, \ldots, 1 \) do
 Convert the gradient on the layer’s output \((\mathbf{h}) \) into a gradient before the activation function \((\mathbf{z}) \):
 \[\mathbf{g} \leftarrow \nabla_{z_k} L = \mathbf{g} \odot f'(z_k) \] (\(\odot \) element-wise, \(f'(\cdot) \) deriv.)
 Compute gradients on weights:
 \[\nabla_{\mathbf{W}_k} L = \mathbf{g} \mathbf{h}_{k-1} \]
 Compute the gradients w.r.t. the next hidden layer:
 \[\mathbf{g} \leftarrow \nabla_{h_{k-1}} L = \mathbf{g} \mathbf{W}_k \]
end for
\end{algorithm}
Backward Pass

Propagate the gradients backwards from the loss to the input layer (i.e. how each layer’s output should change to reduce error):

Compute gradient on the output layer \(\mathbf{g} \leftarrow \nabla_{\hat{y}} L \)

for layer \(k = l, l - 1, \ldots, 1 \) do

Convert the gradient on the layer’s output (\(\mathbf{h} \)) into a gradient before the activation function (\(\mathbf{z} \)):
\[
\mathbf{g} \leftarrow \nabla_{z_k} L = \mathbf{g} \odot f'(z_k) \quad (\odot \text{ element-wise, } f'(\cdot) \text{ deriv.})
\]

Compute gradients on weights:
\[
\nabla_{W_k} L = \mathbf{g} h_{k-1}
\]

Compute the gradients w.r.t. the next hidden layer:
\[
\mathbf{g} \leftarrow \nabla_{h_{k-1}} L = \mathbf{g} W_k
\]

Update current weights:
\[
W_k \leftarrow W_k - \eta \nabla_{W_k} L
\]

end for

return \(W \)
Regularisation

- **L2-regularisation** in the weights of each layer (added in the loss function of each layer)
Regularisation

- **L2-regularisation** in the weights of each layer (added in the loss function of each layer)
- **Dropout**: randomly ignore a percentage (e.g. 20% or 50%) of layer outputs during training:
Regularisation

- **L2-regularisation** in the weights of each layer (added in the loss function of each layer)
- **Dropout**: randomly ignore a percentage (e.g. 20% or 50%) of layer outputs during training:
 - Apply a random binary mask after the activation function, i.e. elementwise multiplication with vector containing %20 0s in random positions
Design Choices

- How many layers?
- How many units per layer?
- What activation function(s)?
Design Choices

- How many layers?
- How many units per layer?
- What activation function(s)?

- Architecture engineering vs feature engineering
- Theory says that we can approximate any function with one hidden layer, practice says different architectures work well for different problems
Implementation tips

- Learning objective non-convex: initialisation matters
 - start with small non-zero values
 - random restarts to escape local optima
- Greater learning capacity makes overfitting more likely: regularise
- Many open libraries are available: PyTorch, Tensorflow, MxNet, Keras etc.
Applications: Word Vectors

- Lecture 1: word vectors by counting co-occurrences with context words
Applications: Word Vectors

- Lecture 1: word vectors by **counting** co-occurrences with context words
- Instead, use a feedforward network to **predict** a context word for a given word (and vice versa)
Applications: Word Vectors

- Lecture 1: word vectors by **counting** co-occurrences with context words
- Instead, use a feedforward network to **predict** a context word for a given word (and vice versa)
- **Word2Vec (Mikolov et al., 2013)** family, more recently supporting char n-grams (e.g. FastText)
Word2Vec

- **Skip-gram model**: Given a word predict its context word
Skip-gram model: Given a word predict its context word

Continuous BOW (CBOW): Given a context word predict the current word
Word2Vec

- **Skip-gram model**: Given a word predict its context word
- **Continuous BOW (CBOW)**: Given a context word predict the current word
- **Input**: A word, represented as a one-hot vector over vocabulary (or the vocabulary index for memory efficiency!)
Word2Vec

- **Skip-gram model:** Given a word predict its context word
- **Continuous BOW (CBOW):** Given a context word predict the current word
- **Input:** A word, represented as a one-hot vector over vocabulary (or the vocabulary index for memory efficiency!)
- **Hidden layer:** One hidden layer of size vocabulary \(\times \) hidden size (usually 300), linear activation function
Word2Vec

- **Skip-gram model**: Given a word predict its context word
- **Continuous BOW (CBOW)**: Given a context word predict the current word
- **Input**: A word, represented as a one-hot vector over vocabulary (or the vocabulary index for memory efficiency!)
- **Hidden layer**: One hidden layer of size vocabulary \times hidden size (usually 300), linear activation function
- **Output**: softmax over the vocabulary to predict the correct context/target word respectively
Word2Vec Architecture

One-hot
(size $|V|$)

Hidden
(size d)

Output
(size $|V|$)

$x_1 \rightarrow W_{|V| \times d}$

$x_2 \rightarrow W_{|V| \times d}$

$x_3 \rightarrow W_{|V| \times d}$

$\rightarrow W_{d \times |V|}$

$\rightarrow y_1$

$\rightarrow y_2$

$\rightarrow y_3$
Training data \((x, y)\) can be obtained from large corpora
Word2Vec

- Training data \((x, y)\) can be obtained from large corpora
- For Skip-gram:

 \[
 \text{the cat sat} \rightarrow (\text{cat, blue}), (\text{cat, sat})
 \]
Training data \((x, y)\) can be obtained from large corpora

- For Skip-gram:

 \[
 \text{the cat sat} \rightarrow (\text{cat, blue}), (\text{cat, sat})
 \]

- For CBOW:

 \[
 \text{the cat sat} \rightarrow (\text{blue, cat}), (\text{sat, cat})
 \]
Word2Vec

- Training data \((x, y)\) can be obtained from large corpora
- For Skip-gram:

 \[
 \text{the cat sat} \rightarrow (\text{cat, blue}), (\text{cat, sat})
 \]

- For CBOW:

 \[
 \text{the cat sat} \rightarrow (\text{blue, cat}), (\text{sat, cat})
 \]

- **Vector** of a word \(x_i = W_i\), from the network weights
Training data \((x, y)\) can be obtained from large corpora

For Skip-gram:

\[
\text{the cat sat} \rightarrow (\text{cat, blue}), (\text{cat, sat})
\]

For CBOW:

\[
\text{the cat sat} \rightarrow (\text{blue, cat}), (\text{sat, cat})
\]

Vector of a word \(x_i = W_i\), from the network weights

Evaluation: standard approaches for word representation (see Lecture 1)
Training data \((x, y)\) can be obtained from large corpora

For Skip-gram:

\[
\text{the cat sat } \rightarrow (\text{cat, blue}), (\text{cat, sat})
\]

For CBOW:

\[
\text{the cat sat } \rightarrow (\text{blue, cat}), (\text{sat, cat})
\]

Vector of a word \(x_i = W_i\), from the network weights

Evaluation: standard approaches for word representation (see Lecture 1)

Pre-trained word embeddings are widely re-used in other NLP tasks, i.e. transfer learning (more in Lecture 10)
Word2Vec: Implementation Details

- Word2Vec is a huge neural network, to make the training feasible:
Word2Vec: Implementation Details

- Word2Vec is a huge neural network, to make the training feasible:
 - **Negative Sampling:** Update the weights for the positive word, plus the weights for a small number (5-20) other words that we want to output 0
Word2Vec: Implementation Details

- Word2Vec is a huge neural network, to make the training feasible:
 - **Negative Sampling:** Update the weights for the positive word, plus the weights for a small number (5-20) other words that we want to output 0
 - **Subsampling frequent words** to decrease the number of training examples
Applications: Text Classification

- **Approach 1**: Pass BOW vectors into a series of hidden layers (extending the LR model in Lecture 2)
 - Approach 2: Pass one-hot word vectors through an embedding layer to obtain embeddings for each word in a document which are subsequently concatenated (or added/averaged) and passed through a series of hidden layers
 - Approach 2 is more contemporary and usually the embedding layer is pre-trained (e.g. using Word2Vec) and is not updated (Lecture 10: transfer learning)
Applications: Text Classification

- **Approach 1:** Pass BOW vectors into a series of hidden layers (extending the LR model in Lecture 2)

- **Approach 2:** Pass one-hot word vectors through an embedding layer to obtain embeddings for each word in a document which are subsequently concatenated (or added/averaged) and passed through a series of hidden layers
Applications: Text Classification

- **Approach 1:** Pass BOW vectors into a series of hidden layers (extending the LR model in Lecture 2)

- **Approach 2:** Pass one-hot word vectors through an **embedding layer** to obtain embeddings for each word in a document which are subsequently **concatenated (or added/averaged) and passed through a series of hidden layers**

- Approach 2 is more contemporary and usually the embedding layer is pre-trained (e.g. using Word2Vec) and is not updated during training (Lecture 10: transfer learning)
Bibliography

- Chapters 6-8 from Goodfellow et al.
- Sections 3-6 from Goldberg
- Tutorial on backprop by D. Stansbury
- Word2vec tutorial by Chris McCormick
Coming up next:

- Information extraction and Ethics by Prof. Jochen Leidner