Recurrent Neural Networks and Neural Language Modelling

COM4513/6513 Natural Language Processing

Nikos Aletras
n.aletras@sheffield.ac.uk
@nikeletras

Computer Science Department

Week 8
Spring 2020
In lecture 6...

- **Feedforward Neural Networks** and how to train them with Backprop
- Feedforward nets are useful to learn word representations but they ignore word order and dependencies between words in a given document.
Feedforward Neural Network

\[h = g(W_h x) \]
\[y = \text{softmax}(W_o h) \]
\[W_o \in \mathcal{R}^{h \times y} \]

\(g(\cdot) \) is an activation function
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document

 - Train with SGD and Backpropagation through Time
 - RNN extensions: Long-Short Term Memory (LSTM) and Gated-Recurrent Unit (GRU)
 - Language modelling: return sentence probabilities as well as representations
 - Text classification: learn contextualised word representations and use them to predict a given class
 - Improve RNNs with Attention
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document
- Train with **SGD** and **Backpropagation through Time**
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document
- Train with **SGD** and **Backpropagation through Time**
- RNN extensions: **Long-Short Term Memory (LSTM)** and **Gated-Recurrent Unit (GRU)**
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document
- Train with **SGD** and **Backpropagation through Time**
- RNN extensions: **Long-Short Term Memory (LSTM)** and **Gated-Recurrent Unit (GRU)**
- Language modelling: return sentence probabilities as well as representations
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document
- Train with **SGD** and **Backpropagation through Time**
- RNN extensions: **Long-Short Term Memory (LSTM)** and **Gated-Recurrent Unit (GRU)**
- Language modelling: return sentence probabilities as well as representations
- Text classification: learn contextualised word representations and use them to predict a given class
In this lecture...

- **Recurrent Neural Networks (RNNs)** to capture long-range dependencies in a document
- Train with **SGD** and **Backpropagation through Time**
- RNN extensions: **Long-Short Term Memory (LSTM)** and **Gated-Recurrent Unit (GRU)**
- Language modelling: return sentence probabilities as well as representations
- Text classification: learn contextualised word representations and use them to predict a given class
- Improve RNNs with **Attention**
Training data is a (large) set of word sequences:

\[D_{\text{train}} = \{ \mathbf{x}^1, \ldots, \mathbf{x}^M \} \]

\[\mathbf{x} = [x_1, \ldots, x_N] \]
Neural Language Modelling: Problem Setup

Training data is a (large) set of word sequences:

\[D_{\text{train}} = \{x^1, \ldots, x^M\} \]
\[x = [x_1, \ldots, x_N] \]

for example:

\[x = [\text{its}, \text{ water}, \text{ is}, \text{ so}, \text{ transparent}, \text{ STOP}] \]
Neural Language Modelling: Problem Setup

Training data is a (large) set of word sequences:

\[D_{train} = \{x^1, ..., x^M\} \]
\[x = [x_1, ... x_N] \]

for example:

\[x = [\text{its, water, is, so, transparent, STOP}] \]

We want to learn a model that returns:

\[P(x), \text{ for } \forall x \in V^{maxN} \]

\(V \) is the vocabulary and \(V^{maxN} \) all possible sentences
Language modelling as classification

\[P(x) = P(x_1, \ldots, x_N) \]
\[= P(x_1)P(x_2 \ldots x_N|x_1) \]
\[= P(x_1)P(x_2|x_1) \ldots P(x_N|x_1, \ldots, x_{N-1}) \]
Language modelling as classification

\[P(\mathbf{x}) = P(x_1, \ldots, x_N) \]
\[= P(x_1)P(x_2 \ldots x_N | x_1) \]
\[= P(x_1)P(x_2 | x_1) \ldots P(x_N | x_1, \ldots, x_{N-1}) \]

Let’s write the probabilities as LR (remember the CRF?):

\[p(x_n = k | x_{n-1} \ldots x_1) = \frac{\exp(\mathbf{w}_k \cdot \phi(x_{n-1} \ldots x_1))}{\sum_{k'=1}^{V} \exp(\mathbf{w}_{k'} \cdot \phi(x_{n-1} \ldots x_1))} \]

- \(\mathbf{w}_k \) are the weights for word \(k \)
- \(\phi(x_{n-1} \ldots x_1) \) are the features extracted from the previous words (one-hot encoding of \(x_{n-1} \ldots x_1 \))
Representing word sequences

Looks like a neural network:

\[p(x_n|x_{n-1}...x_1) = \text{softmax}(W\phi(x_{n-1}...x_1)) \]

\(W \in \mathbb{R}^{V \times C} \) has weights for each word and context
Representing word sequences

Looks like a neural network:

\[p(x_n|x_{n-1}...x_1) = \text{softmax}(W\phi(x_{n-1}...x_1)) \]

\(W \in \mathcal{R}^{|V| \times |C|} \) has weights for each word and context

Let's represent the context with a vector \(s_{n-1} \in \mathcal{R}^d \):

\[p(x_n|x_{n-1}...x_1) = \text{softmax}(Vs_{n-1}) \]
Representing word sequences

Looks like a neural network:

\[
p(x_n|x_{n-1}...x_1) = \text{softmax}(W\phi(x_{n-1}...x_1))
\]

\(W \in \mathcal{R}^{|V|\times|C|}\) has weights for each word and context

Let’s represent the context with a vector \(s_{n-1} \in \mathcal{R}^d:\)

\[
p(x_n|x_{n-1}...x_1) = \text{softmax}(Vs_{n-1})
\]

\(V \in \mathcal{R}^{|V|\times d}\) maps the context to a probability distribution over the words.
Representing word sequences

Looks like a neural network:

\[p(x_n|x_{n-1}...x_1) = \text{softmax}(W\phi(x_{n-1}...x_1)) \]

\(W \in \mathcal{R}^{|V| \times |C|} \) has weights for each word and context

Let’s represent the context with a vector \(s_{n-1} \in \mathcal{R}^d \):

\[p(x_n|x_{n-1}...x_1) = \text{softmax}(Vs_{n-1}) \]

\(V \in \mathcal{R}^{|V| \times d} \) maps the context to a probability distribution over the words.

How do we get \(s_{n-1} \)?
Recurrent neural networks

When generating, x_t is the highest-scoring word in o_{t-1}
Recurrent Neural Networks

\[s_n = \sigma(Ws_{n-1} + Ux_n) \]

- \(s_{n-1} \in \mathbb{R}^d \): "memory" of the context until word \(x_{n-1} \)
- \(W \in \mathbb{R}^{d \times d} \): controls how this memory is passed on
- \(U \in \mathbb{R}^{|\mathcal{V}| \times d} \): matrix containing the word vectors for all the words, \(x_n \) picks one

To get the probability distribution for word \(x_n \):

\[o_{n-1} = \text{softmax}(Vs_{n-1}) \]

\(V \in \mathbb{R}^{d \times |\mathcal{V}|} \): output weight matrix
Recurrent Neural Networks

\[s_n = \sigma(Ws_{n-1} + Ux_n) \]

- \(s_{n-1} \in \mathcal{R}^d \): "memory" of the context until word \(x_{n-1} \)
- \(W \in \mathcal{R}^{d \times d} \): controls how this memory is passed on
- \(U \in \mathcal{R}^{|\mathcal{V}| \times d} \): matrix containing the word vectors for all the words, \(x_n \) picks one

To get the probability distribution for word \(x_n \):

\[o_{n-1} = p(x_n| x_{n-1}...x_1) = \text{softmax}(Vs_{n-1}) \]

- \(V \in \mathcal{R}^{d \times |\mathcal{V}|} \): output weight matrix
We need to learn the word vectors \mathbf{U}, hidden and output layer parameters \mathbf{W}, \mathbf{V}

Standard backpropagation can’t work because of the recurrence: we reuse the hidden layer parameters \mathbf{W}

Backpropagation Through Time: unroll the graph for n steps and sum the gradients in updating

Not as restrictive as the nth-order Markov: we still use all previous words through the recurrence.
Limitations of RNNs

RNNs can't capture long-range dependencies:

- effectively have one layer per word in the sentence
- all context information has to be passed by the hidden layer
- vanishing gradients: the gradient from the last word often never reaches the first
Long-Short Term Memory (LSTM) network

A memory cell is used in addition to the hidden layer to control what information from previous timesteps is useful in predicting.

Long-Short Term Memory (LSTM) network

- **Forget gate** (what info to throw away from previous steps):

 \[f_t = \sigma(W_f[h_{t-1}, x_t]) \]
Long-Short Term Memory (LSTM) network

- **Forget gate** (what info to throw away from previous steps):

 \[f_t = \sigma(W_f[h_{t-1}, x_t]) \]

- **Input gate** (what new info will be stored in the memory cell):

 \[i_t = \sigma(W_i[h_{t-1}, x_t]) \]
Long-Short Term Memory (LSTM) network

- **Forget gate** (what info to throw away from previous steps):
 \[f_t = \sigma(W_f[h_{t-1}, x_t]) \]

- **Input gate** (what new info will be stored in the memory cell):
 \[i_t = \sigma(W_i[h_{t-1}, x_t]) \]

- **New memory cell candidate values**:
 \[\tilde{C}_t = \tanh(W_C[h_{t-1}, x_t]) \]
Long-Short Term Memory (LSTM) network

- **Forget gate** (what info to throw away from previous steps):
 \[f_t = \sigma(W_f[h_{t-1}, x_t]) \]

- **Input gate** (what new info will be stored in the memory cell):
 \[i_t = \sigma(W_i[h_{t-1}, x_t]) \]

- **New memory cell candidate values**:
 \[\tilde{C}_t = tanh(W_C[h_{t-1}, x_t]) \]

- Update memory cell (using input and output gates):
 \[C_t = f_t \ast C_{t-1} + i_t \ast \tilde{C}_t \]
Long-Short Term Memory (LSTM) network

- Output (decide what’s the output filtered by the memory cell):

\[o_t = \sigma(W_o[h_{t-1}, x_t]) \]

\[h_t = o_t \ast \tanh(C_t) \]
Gated Recurrent Unit (GRU2)

- LSTM variant

\[z_t = \sigma(W_z[h_{t-1}, x_t]) \]

\[r_t = \sigma(W_r[h_{t-1}, x_t]) \]

\[\tilde{h}_t = \tanh(W_r[r_t \ast h_{t-1}, x_t]) \]

\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]

Gated Recurrent Unit (GRU2)

- LSTM variant
- **Update gate** (combines input and forget gates):

 $$z_t = \sigma(W_z[h_{t-1}, x_t])$$

Gated Recurrent Unit (GRU\(^2\))

- LSTM variant
- **Update gate** (combines input and forget gates):
 \[
z_t = \sigma(W_z[h_{t-1}, x_t])
 \]
- **Recurrent state** (merges cell state with hidden state):
 \[
r_t = \sigma(W_r[h_{t-1}, x_t])
 \]

Gated Recurrent Unit (GRU2)

- LSTM variant
- **Update gate** (combines input and forget gates):
 \[
 z_t = \sigma(W_z[h_{t-1}, x_t])
 \]
- **Recurrent state** (merges cell state with hidden state):
 \[
 r_t = \sigma(W_r[h_{t-1}, x_t])
 \]
- **New output candidate values**:
 \[
 \tilde{h}_t = tanh(W[r_t \ast h_{t-1}, x_t])
 \]

Gated Recurrent Unit (GRU\(^2\))

- LSTM variant
- **Update gate** (combines input and forget gates):
 \[z_t = \sigma(W_z[h_{t-1}, x_t]) \]
- **Recurrent state** (merges cell state with hidden state):
 \[r_t = \sigma(W_r[h_{t-1}, x_t]) \]
- **New output candidate values**:
 \[\tilde{h}_t = \tanh(W[r_t * h_{t-1}, x_t]) \]
- **Output**:
 \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

RNN Architecture Variants in NLP

- many to one: e.g. text classification
- many to many (equal): e.g. PoS tagging
- many to many (unequal): e.g. machine translation (coming next week), language generation, summarisation

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
RNNs learns word and **sentence/document representations**

- Words are not as interesting since RNNs are slower to train than Skip-Gram: thus use less data
- Hint: use pre-trained word vectors (e.g. skipgram) to initialise the RNN word vectors
- RNN sentence/document representations though are used often!
- Bi-directional RNNs can also be used to learn document representations: one RNN parsing the input from start to end and another one from end to start.
In many-to-one tasks (e.g. text classification), usually the outputs from each timestep are combined (concatenated/averaged/summed) and then passed to the output layer.
In many-to-one tasks (e.g. text classification), usually the outputs from each timestep are combined (concatenated/averaged/summed) and then passed to the output layer.

This naive combination assumes that all representations (from each timestep) have equal contribution.
In many-to-one tasks (e.g. text classification), usually the outputs from each timestep are combined (concatenated/averaged/summed) and then passed to the output layer.

This *naive combination* assumes that all representations (from each timestep) have *equal contribution*.

But that might not be the case!
Improving RNNs with Attention

- In many-to-one tasks (e.g. text classification), usually the outputs from each timestep are combined (concatenated/averaged/summed) and then passed to the output layer.
- This *naive combination* assumes that all representations (from each timestep) have *equal contribution*.
- But that might not be the case!
- **Attention**: compute a weighted linear combination of all the contextualised representations obtained from the RNN:

\[c = \sum_i h_i \alpha_i \]
Improving RNNs with Attention

- In many-to-one tasks (e.g. text classification), usually the outputs from each timestep are combined (concatenated/averaged/summed) and then passed to the output layer.

- This **naive combination** assumes that all representations (from each timestep) have **equal contribution**.

- But that might not be the case!

- **Attention**: compute a weighted linear combination of all the contextualised representations obtained from the RNN:

 \[c = \sum_i h_i \alpha_i \]

- Pass \(c \) to the output layer for classification
Attention Mechanism

Attention usually consists of a similarity function ϕ followed by softmax:

$$a_i = \frac{\exp(\phi(h_i, q))}{\sum_{k=1}^{t} \exp(\phi(q, h_k))}$$

Attention Mechanism

Attention usually consists of a similarity function ϕ followed by softmax:

$$a_i = \frac{\exp(\phi(h_i, q))}{\sum_{k=1}^{t} \exp(\phi(q, h_k))}$$

- $q \in \mathbb{R}^N$ is a trainable vector (learns task specific information)

Attention Mechanism

- Attention usually consists of a similarity function ϕ followed by softmax:

$$a_i = \frac{\exp(\phi(h_i, q))}{\sum_{k=1}^{t} \exp(\phi(q, h_k))}$$

- $q \in \mathbb{R}^N$ is a trainable vector (learns task specific information)
- Additive (or tanh):3

$$\phi(h_i, q) = q^T \tanh(W h_i)$$

Attention Mechanism

- Attention usually consists of a similarity function ϕ followed by softmax:

$$a_i = \frac{\exp(\phi(h_i, q))}{\sum_{k=1}^{t} \exp(\phi(q, h_k))}$$

- $q \in \mathbb{R}^N$ is a trainable vector (learns task specific information)
- Additive (or tanh):3

$$\phi(h_i, q) = q^T \tanh(Wh_i)$$

- Scaled Dot-Product:4

$$\phi(h_i, q) = \frac{h_i^T q}{\sqrt{N}}$$

Attention Mechanism

Bibliography

- Chapters 6-8 from Goodfellow et al.
- Section 6.3 from Eisenstein
- Section 10 from Goldberg
- Blog post on RNNs
- Blog post on LSTMs from where some of the figures were taken
- Blog post on attention
Coming up next:

- Sequence-to-Sequence models and Machine Translation by Dr. Fred Blain